Уникальную альтернативу солнечным батареям создали ученые

08:02, 15 июля
Элементы солнечной панели фото
Ученые создали новый материал, способный работать по принципу солнечной батареи, однако он может быть нанесен на любую поверхность.

Ученые из Канзасского университета достигли значительных прорывов в области органических полупроводников, что открывает перспективы для разработки более эффективных и универсальных солнечных батарей.

Об этом сообщает Interesting Engineering.

Исторически кремний был основным материалом в солнечной энергетике благодаря высокой эффективности и долговечности своих фотоэлектрических панелей. Однако жесткость и высокие затраты на производство кремниевых солнечных элементов ограничивают их использование, особенно на изогнутых поверхностях.

В отличие от существующих материалов, органические полупроводники на основе углерода представляют собой более гибкую и экономически эффективную альтернативу.

"Потенциально они могут снизить стоимость производства солнечных батарей, поскольку эти материалы можно наносить на произвольные поверхности с помощью растворов — точно так же, как мы красим стены", — объясняет Вай-Лун Чан, доцент кафедры физики и астрономии Канзасского университета и автор исследования.

Органические полупроводники можно настроить на поглощение света определенной длины волны, что значительно расширяет их потенциал для применения. Эти особенности делают органические солнечные панели особенно перспективными для использования в экологически чистых и устойчивых зданиях нового поколения.

Несмотря на эти преимущества, органические солнечные батареи традиционно отстают по эффективности от своих кремниевых аналогов: кремниевые панели преобразуют в электричество до 25% солнечного света, в то время как органические элементы имеют КПД около 12%.

Канзасская исследовательская группа изучила превосходство NFAs над другими органическими полупроводниками. В ходе исследования было обнаружено удивительное явление: в определенных условиях возбужденные электроны в NFAs могут получать энергию из окружающей среды, а не терять ее.

Аспирант Кушал Риджал руководил экспериментами с использованием двухфотонной фотоэмиссионной спектроскопии, которая позволяет отслеживать энергию возбужденных электронов с высокой временной разрешающей способностью, до триллионной доли секунды.

Исследователи считают, что такой прирост энергии является результатом взаимодействия квантовой механики и термодинамики. На квантовом уровне возбужденные электроны могут одновременно находиться на нескольких молекулах. Это в сочетании со вторым законом термодинамики изменяет традиционное направление потока тепла.

Ранее "Курсор" писал, что исследователи достигли мирового рекорда эффективности солнечных батарей в реальных условиях, используя технологию, которая включает укладку сотен слоев материалов для максимизации захвата электронов, возбуждаемых солнечными фотонами.

Автор материала
ТЭГИ:
facebook telegram whatsapp viber instagram youtube camera images logo general logo general white