Этот прорыв может стать способом выйти за пределы даже самых передовых текущих ограничений хронометража, а также стать фантастическим инструментом в захватывающей области квантовых вычислений: квантовой криптографии.
Новое исследование было опубликованном в журнале Nature.
Атомные часы используются в качестве хронометров, измеряя резонансные частоты атомов, когда их электроны переключаются между энергетическими уровнями. Традиционно это делалось с использованием атомов цезия и микроволн, но с 2000 года стали применяться новые атомы, использующие видимый свет. Это оптические атомные часы, в которых используются такие элементы, как иттербий, ртуть и стронций.
Оптические атомные часы недавно были использованы, чтобы добиться впечатляющих успехов в точном хронометрировании. Они в 100 раз точнее традиционных цезиевых атомных часов. Настолько точны, что вскоре их можно будет использовать для переопределения второго . Но и у них есть свои ограничения. Особенно, когда требуется несколько часов.
Эти оптические часы настолько точны, что позволяют проверять небольшие изменения гравитации, как для проверки таких теорий, как теория относительности, так и для изучения того, что на самом деле находится у нас под ногами. Однако эти подходы требуют сравнения разных часов, и точность этих измерений для независимых устройств будет зависеть от стандартного квантового предела. Синхронизировать два атомных часа сложно, потому что даже простое их измерение может привести к их изменению и ошибкам. Но есть способ сделать меньше измерений, и именно здесь происходит квантовая «магия».
Запутывание атомов в двух часах позволяет достичь предельной точности, допускаемой квантовой теорией, предела Гейзенберга. Исследователи сообщают о возможности сделать это в системе, состоящей из двух часов, скоторые состоят из одного атома стронция, каждые на расстоянии 2 м друг от друга. Они уменьшили неопределенность в 1,4 раза.
Запутанность - особое состояние, в котором частицы, которые мы считаем отдельными, ведут себя как часть единой системы. Изменение одного ведет к мгновенному изменению другого, независимо от расстояния. Тот факт, что это теоретически может произойти между двумя частицами на каждом конце Вселенной, вызывает у многих ученых тревожное чувство. Эйнштейн назвал это «жутким действием на расстоянии». Но это не причинная связь: частицы находятся в едином запутанном состоянии, поэтому, делая что-то с одной частицей (например, наблюдая), вы на самом деле воздействуете на все состояние, даже если оно простирается на миллиарды световых лет.
В лаборатории запутанные состояния далеки от этой обширной прочной системы. Они очень нежные и легко ломаются. Эта новая работа подчеркивает, что это все еще большая проблема и что эта простая сеть оптических часов - всего лишь доказательство концепции.
Новое исследование не только подчеркивает ограничения метода, но и возможные решения.
Ранее Курсор писал, что физики обнаружили доказательства существования трех невиданных ранее частиц. Физики говорят, что нашли в данных Большого адронного коллайдера свидетельства существования трех невиданных ранее комбинаций кварков.
Кроме этого, физики обнаружили необычную аномалию, которая может перевернуть мир науки. По словам ученых, если это действительно признак стерильного нейтрино, то можно было бы, наконец, получить доказательства того, что вещество существует в огромных количествах, но создает лишь гравитационную «ямку» в пространстве.
Физики смогли измерить продолжительность жизни нейтронов. Ученые провели самое точное в мире измерение продолжительности жизни нейтрона, которое может помочь ответить на вопросы о ранней Вселенной.
Кроме этого, что ученые разгадали многовековую тайну физики. Исследователи Техниона нашли эффективное решение известной проблемы трех тел в физике.
Курсор писал, что физики впервые создали «атомный торнадо».
Напомним, что физики открыли новый электронный феномен.